
Scientific Computing Learning Community

UNIV-1100 — First Year Seminar: Scientific
Computing Learning Community

Instructor: A. J. Meir
Peer Instructor: Lauren E. Gaines

Auburn University

November 14, 2012

Scientific Computing Learning Community

Programming

Built-in Functions and Code Blocks

Built-in functions

Code blocks

Boolean operators

Scientific Computing Learning Community

Programming

Loops

for

while

Scientific Computing Learning Community

Programming

Conditionals

if

if, else

if, elif

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Revisited

Recall, if

I =

∫ b

a
f (x)dx

then
I = average of f on (a, b) ∗ (b − a)

I ≈ (b − a)
1

n

n∑
i=1

f (xi)

where xi are uniformly distributed random numbers between a and b

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Python Program

def MCint () :
import random
from math import s q r t

n = 100000
s = 0
f o r i i n ra ng e (n) :

x = random . u n i f o r m (0 , 1)
s += s q r t (1 . 0 − x ∗∗2)

I = (f l o a t (1 − 0)/ n)∗ s
p r i n t I

MCint ()

Scientific Computing Learning Community

Programming

Monte Carlo Integration - A Better Program

def f 1 (x) :
from math import s q r t
return s q r t (1 − x ∗∗2)

def MCint (f , a , b , n) :
import random

s = 0
f o r i i n ra ng e (n) :

x = random . u n i f o r m (a , b)
s += f (x)

I = f l o a t (b − a)/ n∗ s
return I

Scientific Computing Learning Community

Programming

Monte Carlo Integration - A Better Program
(continued)

a = 0
b = 1
n = 1000000

I = 4∗MCint (f1 , a , b , n)

p r i n t I

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Creating Modules

We have used modules

A module is a collection of useful data and functions

Functions in a module can be reused in different programs

If you have some general functions that can used in more than one
program, consider making a module

Making modules is easy: just collect functions in a file, and you
have a module

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Creating Modules

Create a module functions (which provides various functions), that is
create a file functions.py (which contains definitions of various
functions).

from math import s q r t

def f 1 (x) :
return s q r t (1 − x ∗∗2)

def f 2 (x) :
return 1/ x

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Creating Modules

Create a module MCinteg which provides the function MCint, that is
create a file MCinteg.py (which contains the definition of MCint).

def MCint (f , a , b , n) :
import random

s = 0
f o r i i n ra ng e (n) :

x = random . u n i f o r m (a , b)
s += f (x)

I = f l o a t (b − a)/ n∗ s

return I

Scientific Computing Learning Community

Programming

Monte Carlo Integration - Creating Modules

Putting it all together

Import the modules you created and run your program

import f u n c t i o n s
import MCinteg

a = 0
b = 1
n = 1000000

I = MCinteg . MCint (f u n c t i o n s . f1 , a , b , n)

p r i n t 4∗ I

Scientific Computing Learning Community

Programming

Trapezoidal Rule

We can approximate the integral

I =

∫ b

a
f (x)dx

as follows. For some n set h = b−a
n and compute the approximation

I ≈ h

[
f (a)

2
+

n−1∑
i=1

f (a + ih) +
f (b)

2

]

Scientific Computing Learning Community

Programming

Trapezoidal Rule - The Program

def T r a p e z o i d (f , a , b , n) :

h = (b − a)/ f l o a t (n)
s = f (a) / 2 . 0

f o r i i n ra ng e (1 , n) :
s += f (a + i ∗h)

s+= f (b) / 2 . 0

I = s ∗h

return I

Scientific Computing Learning Community

Programming

Using the Trapezoidal Rule to Approximate π

import f u n c t i o n s
import I n t e g

a = 0
b = 1
n = 1000

I = I n t e g . T r a p e z o i d (f u n c t i o n s . f1 , a , b , n)

p r i n t 4∗ I

Scientific Computing Learning Community

Programming

Vectors and Vectorized Operations

Python (actually numpy) allows dealing with arrays or vectors

We can perform array computations, or vector operations (called
vectorization

Array computations are useful for more than plotting curves

Useful when we need to compute with large amounts of numbers,
we store the numbers in arrays and compute with arrays, giving
shorter and faster code

Scientific Computing Learning Community

Programming

Vectors and Vectorized Operations

In general a vector v is an n-tuple of numbers
v = (v0, v1, v2, . . . , vn−1)

We can do various mathematical operations on vectors

Vectors can be represented by lists, vi is stored as v[i]

Arrays are generalizations of vectors, these have multiple indices,
e.g., matrices

The number of indices in an array is the rank, or number of
dimensions

A vector is a one-dimensional, or rank 1 array

We use Numerical Python arrays instead of lists to represent
mathematical arrays (this is computationally more efficient)

Scientific Computing Learning Community

Programming

Plotting and Graphing

To graph a function f , we evaluate the function at points (in its
domain).

This yields points along the curve y = f (x), which we can store in one
dimensional arrays x and y

To obtain a graph we connect these points with line segments, this is
done programatically with plot(x, y)

Scientific Computing Learning Community

Programming

Plotting and Graphing

import numpy
import m a t p l o t l i b . p y p l o t as p l t

t = numpy . l i n s p a c e (0 , 3 , 5 1)
y = t ∗∗2∗numpy . exp(− t ∗∗2)

p l t . p l o t (t , y)
p l t . s a v e f i g (’ img1 . png ’)
p l t . s a v e f i g (’ img1 . pdf ’)
p l t . show ()

Scientific Computing Learning Community

Programming

Plotting and Graphing

	Programming

